Authors: Elaine M. Waters, Sarah E. Rowe, James P. O'Gara, Brian P. Conlon
Journal: PLoS Pathogens
PMID: 28033390
The remarkable tolerance of bacterial biofilms to antimicrobial drugs underpins their role in chronic and recurring infections. Staphylococcus aureus biofilms are embedded in an extracellular matrix composed of self-produced extracellular polysaccharides, DNA, and proteins or host-derived matrices such as fibrin, prompting speculation that limited drug diffusion into biofilms contributes to tolerance. However, the slow- and non-growing phenotypes of biofilm cells resemble those observed in the stationary growth phase, which is known to enrich for the highly antibiotic-tolerant persister phenotype. Indeed, recent studies have revealed that the antibiotic tolerance phenotypes of S. aureus biofilm and persister cells are strikingly similar [1–5]. Here, we will explore the idea that biofilms are enriched with adherent persister cells and that research into the biofilm and persister phenotypes has converged.