Palmitoleic acid sensitizes vancomycin-resistant Staphylococcus aureus to vancomycin by outpacing the expression of resistance genes
Authors: Zajeba Tabashsum, Michelle Angeles-Solano, Ashelyn E. Sidders, Joshua B. Parsons, Sarah E. Rowe
Journal: Microbiology Spectrum
PMID: 39656010
Abstract: The rise in antibiotic resistance limits the availability of antibiotics to treat bacterial infections. Despite this, antibiotic development pipelines remain sparse which makes using adjuvants to reverse antibiotic resistance a promising therapeutic strategy. The use of vancomycin, a frontline antibiotic used to treat hospitalized patients with methicillin-resistant Staphylococcus aureus (MRSA) infections, is complicated by high rates of treatment failure. Vancomycin binds to the D-ala-D-ala terminus of the nascent peptidoglycan precursor lipid II, preventing cell wall biosynthesis. Vancomycin-resistant strains of S. aureus and Enterococci typically express a van gene cluster that is induced in response to vancomycin and results in the synthesis of an alternative lipid precursor with a peptide chain ending in D-ala-D-lac. Vancomycin has low affinity for the D-ala-D-lac terminus, and the bacteria can resume growth even in the presence of an otherwise lethal dose of vancomycin. We previously showed that palmitoleic acid, a host-produced monounsaturated fatty acid, combined with vancomycin led to an accumulation of large fluid patches in the bacterial membrane, resulting in membrane destabilization and cell death. In this study, we observed that palmitoleic acid increases the rate of vancomycin killing by more than 50-fold, compared to vancomycin alone. This rapid bactericidal activity by the combined treatment sensitized vancomycin-resistant S. aureus (VRSA) and vancomycin-resistant Enterococcus (VRE) to vancomycin, likely by outpacing the expression of vancomycin resistance genes. This study represents an important step in the ongoing effort to mitigate antibiotic resistance.